PROCESS THEORY BASED ON BISIMULATION SEMANTICS

J.A. Bergstra
University of Amsterdam, Department of Computer Science
P.0. Box 19268, 1000 GG Amsterdam;
State University of Utrecht, Department of P hilosophy,
P.O. Box 8810, 3508 TA Utrecht.

J.'W. Klop
Centre for Mathematics and Computer Science,
P.0. Box 4079, 1009 AB Amsterdam;
Free University, Department of Mathematics and Computer Science,
De Boelelaan 1081, 1081 HV Amsterdam.

Note: Research partially supported by ESPRIT project 432, Meteor.

Chapter 1 of this paper is a modified version of ‘Process algebra: specification and verification in
bisimulation semantics’, from CWI Monograph 4, Proc. of the CWI Symposium Mathematics ana
Computer Science II (eds. Hazewinkel, Lenstra, Meertens), North-Holland, Amsterdam 1986.
Permission of the editors to include the present Chapter 1 here is gratefully acknowledged.

ABSTRACT

In this paper a process is viewed as a labeled graph modulo bisimulation equivalence. Three
topics are covered: (i) specification of processes using finite systems of equations over the
syntax of process algebra; (ii) inference systems which are complete for proving the
equivalence of regular (finite state) processes; (iii) variations of the bisimulation model.

Introduction

We will discuss process theory on the basis of a given semantic concept. A process will be a rooted

directed graph where arcs are labeled with actions. An example may clarify this matter (se¢ Figure
1.1).

Figure 1.1
For instance the process P denotes a process that has two options for initial actions, a and b. After
the a-step P will terminate, but after having done the b-step P has again two options, ¢ and d.

Now obviously the concept of a process should be made independent of its incidental coding
in a graph. So we must determine an appropriate equivalence relation on graphs. There are several
possibilities for such equivalence relations. Relevant references are for instance: Brookes, Hoare &
Roscoe [84], Hennessy [88], De Nicola & Hennessy [83], and Phillips [87]. However,
bisimulation equivalence, as introduced in Park [81], stands out, in our view, as the most natural
identification mechanism on process graphs discovered thus far.

Having thus established roughly the domain of processes as that of process graphs modulo

51

bisimulation, the next step is to incorporate the major discovery of Milner [80], namely that
processes have an algebraic structure. Our paper has to balance between two opposite poles: (2) the
syntax of process algebra and its axioms and proof rules, (b) the extremely rich world of process
graphs and bisimulations. The main relations between (a) and (b) are as follows:

(1) Using the syntax of process algebra we may write down equational axioms and axiom
schemes that ‘specify’ bisimulation semantics. These axioms capture the intended process
semantics in algebraic terms.

Chapter 1 contains a survey of a possible syntax of process algebra (ACP, Algebra of Communicating
Processes, and extensions) and its axioms and rules: see Table 22. In this setting one finds the concept of a
process algebra, i.e. a model of (the axioms of) process algebra: an appropriate class of process graphs,
together with a definition of the algebraic operators on these process graphs such that bisimulation
equivalence becomes a congruence relation. The main model is G/ .5, described in Chapter 1, Section 1.13.

(2) Equations over the syntax of process algebra having free variables ranging over processes
can be solved in bisimulation semantics. In particular so-called systems of guarded recursion

equations turn out to have unique solutions. These systems are used to specify processes.
Chapter 1 contains several examples of process specifications as well as a general theorem (1.14.2) that

expresses the adequacy of finite guarded recursive equational specifications for the description of computable
processes.

(3) Suppose that a particular class of process specifications in the sense of (2) is given. Then a
major question is to decide whether or not two specifications specify the same process. This matter

is undecidable in general, but in some cases positive results can be obtained.
Chapter 2 discusses the bisimulation equivalence problem for regular processes. For this case a complete
inference system is presented.

(4) In the absence of the silent step T, for each process algebra (based on graphs modulo
bisimulation equivalence) one can define the corresponding algebra of processes modulo n withn a
natural number. In this algebra processes are identified whenever the restrictions of their behaviour
to the first n actions are bisimilar.

Complementary to this construction ‘modulo n’, there is the construction of projective limits
of process algebras and processes. Equivalently, such a projective limit can be viewed as a
topological completion in an appropriate topology. This leads to a topological view of process

domains related to the work of De Bakker & Zucker [82a,b].
In Chapter 3 we study in detail the topological properties of process domains that result from general
topological constructions on the basis of spaces with process graphs modulo bisimulation.

Contents
Introduction
1. Specification and verification in bisimulation semantics
2. Complete inference systems for regular processes
3. A comparison of process models related to bisimulation semantics
References

52

1. Specification and verification in bisimulation semantics

This chapter is a modified version of Bergstra & Klop [86c]. It serves as an introduction to both
process algebra and bisimulation semantics. Sections 1-11 provide syntax and defining equations
for our operator set of process algebra as well as several examples of process specifications
including counters, bags, stacks and queues. Section 1.12 contains an extended example of a
specification and verification in process algebra. To this end an alternating bit protocol is verified
and specified in all detail. Sections 1.13, 1.14 introduce the bisimulation model and describe the
expressive power of recursive specifications in the context of the bisimulation model.

1.1. Basic Process Algebra.

The kernel of all axiom systems for processes that we will consider, is Basic Process Algebra. The
processes that we will consider are capable of performing atomic steps or actions a,b,c,..., with the
idealization that these actions are events without positive duration in time; it takes only one moment
to execute an action. The actions are combined into composite processes by the operations + and -,
with the interpretation that (a+b)-c is the process that first chooses between executing a or b and,
second, performs the action ¢ after which it is finished. (We will often suppress the dot and write
(a+b)c.) These operations, ‘alternative composition’ and ‘sequential composition’ (or just sum and
product), are the basic constructors of processes. Since time has a direction, multiplication is not
commutative; but addition is, and in fact it is stipulated that the options (summands) possible at
some stage of the process form a set. Formally, we will require that processes x,y,... satisfy the
following axioms:

BPA

X+y = y+X
(x+y)+z = x+(y+2)
X+X = X

(X+y)z = Xz+yz
(xy)z = x(yz)

Table 1

Thus far we used ‘process algebra’ in the generic sense of denoting the area of algebraic
approaches to concurrency, but we will also adopt the following technical meaning for it: any
model of these axioms will be a process algebra.. The simplest process algebra, then, is the term
model of BPA (Basic Process Algebra), whose elements are BPA-expressions (built from the
atoms a,b,c,... by means of the basic constructors) modulo the equality generated by the axioms.
We will denote this structure with A . This process algebra contains only finite processes; things
get more lively if we admit recursion enabling us to define infinite processes. Even at this stage one
can define, recursively, interesting processes; consider for instance the counter in Table 2.

53

COUNTER

X = (zero + up-Y)- X
Y =down + up-Y-Y

Table 2

Here ‘zero’ is the action that asserts that the counter has value 0, and ‘up’ and ‘down’ are the
actions of incrementing, respectively decrementing, the counter by one unit. The process COUNTER
is now represented by X; Y is an auxiliary process. COUNTER is a ‘perpetual’ process, that is, all
its execution traces are infinite. Such a trace is e.g. zero-zero-up-down-zero-up-up-up- A
question of mathematical interest only is: can COUNTER be defined in a single equation, without
auxiliary processes? The negative answer is an immediate consequence of the following fact:

1.1.1. THEOREM. Let a system {X; = T(X;,...X) |1=1,...,n} of guarded fixed point equations
over BPA be given. Suppose the solutions X; are all perpetual. Then they are regular.

The solutions are in this case labeled transition graphs—modulo a certain equivalence relation
which will be extensively discussed in the sequel. Two concepts in this statement need also an
explanation: a fixed point equation (or recursion equation), like X = (zero + up-Y)-X is guarded if
every occurrence of a recursion variable in the right hand side is preceded (‘guarded’) by an
occurrence of an action. For instance, the occurrence of X in the right-hand side of

X = (zero + up-Y)-X is guarded since, when this X is accessed, one has to pass either the guard
zero or the guard up. A non-example: the equation X = X + a-X is not guarded. Furthermore, a
process is regular if it has only finitely many ‘states’; clearly, COUNTER is not regular since it has
just as many states as there are natural numbers. Let us mention one other property of processes
which have a finite recursive specification (by means of guarded recursion equations) in BPA: such
processes are uniformly finitely branching. A process is finitely branching if in each of its states it
can take steps (and thereby transform itself) to only finitely many subprocesses; for instance, the
process defined by X = (a+b+c)X has in each state branching degree 3. ‘Uniformly’ means that
there is uniform bound on the branching degrees throughout the process.

In fact, a more careful treatment is necessary to define concepts like ‘branching degree’
rigorously. For, clearly, the branching degree of a +a ought to be the same as that of the process
‘a’, since a + a = a. And the process X = aX will be the same as the process X = aaX; in turn these
will be identified with the process X = aX + aaX. In the sequel we will extensively discuss the
semantic criterion by means of which these processes are identified (‘bisimilarity’). Milner [84]
has found a simple axiom system (extending BPA) which is able to deal with recursion and which
is complete for regular processes with respect to ‘bisimilarity’. (See Section 2.3 in Chapter 2.)

Another non-trivial example is the following specification of the process behaviour of a Stack
with data 0,1:

54

STACK

X=00.YX+1l.ZX
y=0T+0d.YY + LL.ZY
z=1T+0l.YZ+ 1d.zz

Table 3

Here 0l and 0T are the actions ‘push 0’ and ‘pop 0’, respectively; likewise for 1. Now Stack is
specified by the first recursion variable, X. Indeed, according to the first equation the process X is
capable of performing either the action 04, after which the process is transformed into YX, or 11,
after which the process is transformed into ZX. In the first case we have using the second equation
YX = 0T +0L.YY + 1L.ZY)X = 0T-X + 0L.YYX + 11.ZYX. This means that the process YX

has three options; after performing the first one (0T) it behaves like the original X. Continuing in
this manner we find a transition diagram or process graph as in Figure 1.2.

Stack

Figure 1.2

Before proceeding to the next section, let us assure the reader that the omission of the other

distributive law, z(x + y) = zx + zy, is intentional. The reason will become clear after the
introduction of ‘deadlock’.

1.2. Deadlock. A vital element in the present set-up of process algebra is the process &
signifying ‘deadlock’. The process ab performs its two steps and then stops, succesfully; but the
process abd deadlocks after the a- and b-action: it wants to do a proper action but it cannot. So § is

the acknowledgement of stagnation. With this in mind, the axioms to which 8 is subject, should be
clear:

55

DEADLOCK

S+x=x

§x=98

Table 4

(In fact, it can be argued that ‘deadlock’ is not the most appropriate name for the process constant
5. In the sequel we will encounter a process which can more rightfully claim this name: 19, where
T is the silent step. We will stick to the present terminology, however.)

The axiom system of BPA (Table 1) together with the present axioms for 0 is called BPAg.
We are now in a position to motivate the absence in BPA of the ‘other’ distributive law: z(x+y) =
zx+zy. For, suppose it would be added. Then ab = a(b + 8) =ab + ad. This means that a process
with deadlock possibility is equal to one without, conflicting with our intention to model also
deadlock behaviour of processes.

The essential role of the new process 8 will only be fully appreciated after the introduction of
communication, below.

1.3. The merge operator.

If x,y are processes, their ‘parallel composition” x || v is the process that first chooses whether to
do a step in x or in y, and proceeds as the parallel composition of the remainders of x,y. In other
words, the steps of x,y are interleaved or merged. Using an auxiliary operator L (with the
interpretation that x || y is like x || y but with the commitment of choosing the initial step from x)
the operation || can be succinctly defined by the axioms:

MERGE
x|y =xLy+ylLx
ax [y =axlly
ally = ay
x+9llz =xlLz+yllz
Table 5

The system of nine axioms consisting of BPA and the four axioms for merge will be called PA.
Moreover, if the axioms for & are added, the result will be PAg. The operators || and || will also be
called merge and left-merge respectively.

The merge operator corresponds to what in the theory of formal languages is called shuffle.
The shuffle of the words ab and cd is the set of words {abed, acbd, cabd, acdb, cadb, cdab}.
Merging the processes ab and cd yields the process

abllcd = ab|_cd + cd|_ab = a(bl|cd) + c(dl|ab) = a(b|Lcd + cd[| b) + c(d[Lab + abl| d) =
a(bed + c(d||b)) + c(dab + a(bl|d)) = a(bed + c(db+bd)) + c(dab + a(bd+db)),

58

By means of these projections a distance between processes X,y can be defined: d(x,y) = 27" where
n is the least natural number such that rt,(x) # % (y), and d(x,y) = 0 if there is no such n. If the
term model A, of BPA (or PA) as in Section 1.1 is equipped with this distance function, the result
is an ultrametrical space (A, d). By metrical completion we obtain a model of BPA (resp. PA)in
which all systems of guarded recursion equations have a unique solution. In fact, the guardedness
condition is exactly what is needed to associate a contracting operator on the complete metrical
space with a guarded recursion equation. (E.g. to the recursion equation X = aX the contracting
function f(x) = ax is associated; indeed d(f(x),f(y)) < d(x,y)/2.) Banach’s contraction theorem then
proves the existence of a unique fixed point. This model construction has been employed in
various settings by De Bakker & Zucker [82a,b], who also posed the question whether unguarded
fixed point equations, such as X = aX + X or Y = (aY || Y) + b, always have a solution in the
metric completion of (Am, d) as well. This turns out to be the case:

1.4.1. THEOREM. Let q be an arbitrary process in the metric completion of (A, d) and let X =
s(X) be a recursion equation in the signature of PA.
Then the sequence q, (@), s(s(qQ)), s(s(s(q))), ... converges to a solution q* = s(q*).

For a proof see Bergstra & Klop [87]. In general, the fixed points q* = s(q*) are not unique. The
proof of 1.4.1 in Bergstra & Klop [87] is combinatorial in nature; it is not at all clear whether this
convergence result can be obtained by the ‘usual’ convergence proof methods, such as invoking
Banach’s fixed point theorem or (in a complete partial order setting) the Knaster-Tarski fixed point
theorem. In Kranakis [87] the present theorem is extended to the case where s(X) may contain
parameters.

1.4.2. REMARK. An alternative way to obtain this model (the metric completion of (Agy d)) is as
follows. Let A, denote A modulo the equation x =1t (x); so A, is the initial algebra of BPA U {x
=T7,(x)}, containing only processes of depth at most n. Now the family of models and projections
(Ap, y : Ap 1 = Ap I n 20} has a projective limit A®. This structure is isomorphic to the metric
completion of (A, d). Therefore we will use A as an alternative notation for the metric
completion of (A, d).

1.5. Communication.

So far, the parallel composition or merge (||) did not involve communication in the process x||y:
one could say that x and y are ‘freely’ merged or interleaved. However, some actions in one
process may need an action in another process for an actual execution, like the act of shaking hands
requires simultaneous acts of two persons. In fact, ‘handshaking’ is the paradigm for the type of
communication which we will introduce now. If A = {a,b,c,...,8} is the action alphabet, let us
adopt a binary communication function |: A x A — A satisfying the axioms in Table 7.

59

COMMUNICATION FUNCTION

alb =bla
(alb)|c =al®lo)
Sla =8

Table 7

Here a,b vary over A, including 3. We can now specify merge with communication ; we use the
same notation || as for the ‘free’ merge in Section 1.3 since in fact ‘free’ merge is an instance of
merge with communication by choosing the communication function trivial, i.e. a |b=3forallab
€ A. There are now two auxiliary operators, allowing a finite axiomatisation: left-merge (L) as
before and | (communication merge or simply ‘bar’), which is an extension of the communication
function in Table 7 to all processes, not only the atoms. The axioms for || and its auxiliary
operators are given in Table 8.

MERGE WITH COMMUNICATION

xlly =xlly+ylx+xly
axlly =akly)

ally =ay

x+ylz =xllz+yllz

ax|b =(a|b)x

a|bx =(a|b)x

ax|by =(@lb)xlly)
x+y)|z =x|z+ylz
x|(y+z) =x|y+x|z

Table 8

We also need the so-called encapsulation operators dy (for every H < A) for removing
unsuccessful attempts at communication:

ENCAPSULATION

oy @ =aifagH

oy @ =3ifaeH

Oy (x+y) =3 (X) +0g)
oy (xy) =9y (x)-og ¥

Table 9

These axioms express that dy ‘kills’ all atoms mentioned in H, by replacing them with 8. The
axioms for BPA, DEADLOCK together with the present ones in Tables 7-9 constitute the axiom
system ACP (Algebra of Communicating Processes). Typically, a system of communicating
PTOCESSES Xq,...,X, 1S NOW represented in ACP by the expression BH(xlll...len). Prefixing the
encapsulation operator says that the system Xp,....X, is to be perceived as a separate unit with

60

respect to the communication actions mentioned in H; no communications between actions in H
with an environment are expected or intended.

A useful theorem to break down such expressions is the Expansion Theorem (first
formulated by Milner, for the case of CCS; see Milner [80]) which holds under the assumption of
the handshaking axiom x|y |z = 8. This axiom says that all communications are binary. (In fact we
have to require associativity of ‘||’ first—see Table 10.)

1.5.1. EXPANSION THEOREM.
X1 ” ...ka =2i in_in + Zlvﬁj (Xi | XJ)”__Xkl’J

Here in denotes the merge of X;,...,Xy €xcept x;, and inJ denotes the same merge eXCept X;,X; k
> 3). For instance, for k = 3:

xllyllz=x|Lyllz) + ylL(xllx) + 2L xlly) + |2 Lx + @I0)Ly + xInlLz

In order to prove the Expansion Theorem, one first proves by simultaneous induction on term
complexity that for all closed ACP-terms (i.e. ACP-terms without free variables) the following
axioms of standard concurrency hold:

AXIOMS OF STANDARD CONCURRENCY

&ylz =xlol2)
xinllz =x|yl2

x|y =y|x
xlly =yllx
x|yl =&Iplz
xyllzy =&lIyllz
Table 10

The defining power of ACP is strictly greater than that of PA. The following is an example
(from Bergstra & Klop [84b]) of a process U, recursively defined in ACP, but not definable in PA:
let the alphabet be {a,b,c,d,5} and let the communication function be given by c|c =a,d |[d=D,
and all other communications equal to 8. Let H = {c,d}. Now we recursively define the process U
as in Table 11:

U=8H dcY||Z)
X=cXc+d

Y =dXY
Z=dXcZ

Table 11

61
Then, we claim, U = ba(baz)z(ba3)2(ba4)2... . Indeed, using the axioms in ACP and putting
U, =0y (dc"Y||Z)
for n 2 1, a straightforward computation shows that
U, = ba"ba™1U ;.

By Theorem 1.3.1, U is not definable in PA, since the one infinite trace of U is not eventually
periodic.

We will often adopt a special format for the communication function, called read-write
communication. Let a finite set D of data d and a set {1,....p} of porzs be given. Then the alphabet
consists of read actions ri(d) and write actions wi(d), fori=1,...,p and d € D. The interpretation
is: read datum d at port i, write datum d at port i respectively. Furthermore, the alphabet contains
actions ci(d) fori = 1,...,p and d € D, with interpretation: communicate d at i. These actions will
be called transactions . The only non-trivial communications (i.e. not resulting in J) are: wi(d)|ri(d)
= ci(d). Instead of wi(d) we will also use the notation si(d) (send d along i). Note that read-write
communication satisfies the handshaking axiom: all communications are binary.

1.5.2. EXAMPLE. Using the present read-write communication format we can write the recursion
equation for a Bag By, (cf. Section 1.3) which reads data d € D at port 1 and writes them at port 2
as follows:

Biy = Zgep rH@W2(d) || Byp).

In order to illustrate the defining power of ACP, we will now give an infinite specification of
the process behaviour of a queue with input port 1 and output port 2. Here D is a finite set of data
(finite since otherwise the sums in the specification below would be infinite, and we do not
consider infinite expressions), D* is the set of finite sequences & of elements from D; the empty
sequence is A. The sequence 6*¢' is the concatenation of sequences 0,0

QUEUE

Q= Ql = Ede D I'l(d).Qd
Qgtg =s2(d).Qs+ Zee pI1(€).Qexgxq (forall deD and o D¥)

Table 12

Note that this infinite specification uses only the signature of BPA. We have the following
remarkable fact:

62

1.5.2. THEOREM. Using read-write communication, the process Queue cannot be specified in ACP
by finitely many recursion equations.

For the lengthy proof see Bergstra & Tiuryn [87]. It should be mentioned that the process Queue
can be finitely specified in ACP if the read-write restriction is dropped and n-ary communications
are allowed; in the next section it is shown how this can be done. In the sequel we will present
some other finite specifications of Queue using features to be introduced later.

1.6. Renaming. A useful ‘add-on’ feature is formed by the renaming operators pr, where

f: A — A is a function keeping & fixed. A renaming p¢ replaces each action ‘a’ in a process by f(a).
In fact, the encapsulation operators dyy are renaming operators; f maps Hg A to S and fixes A - H
pointwise. The following axioms, where ‘id’ is the identity function, are obvious:

RENAMING

pea) =f(a)

px+y) = pe(x) + pg(y)
pexy) = p(x)-PLy)
Pig® =x

(Pro P =Ppog®)

Table 13

Again the defining power is enhanced by adding this feature. While Queue as in the previous
section could not yet be finitely specified, it can now.

The actions are the r1(d), s2(d) as before; there are moreover ‘auxiliary’ actions r3(d),
$3(d), c3(d) for each datum d. Communication is given by 13(d) | s3(d) = c3(d) and there are no
other non-trivial communications. If we let p.3_,¢- be the renaming c¢3(d) — s2(d) and pgy_,¢3:
s2(d) — s3(d), then for H = {s3(d), r3(d) | de D} the following two guarded recursion equations
give an elegant finite specification of Queue:

QUELUE, FINITE SPECIFICATION

Q=Zgep 1A 3450 o OEsp 553(Q 152(D)Z)
Z= ZdE D l'3(d)'Z

Table 14

(This specification was inspired by a similar specification in Hoare [84]. The present formulation is
from Baeten & Bergstra [88].) The explanation that this is really Queue is as follows. We intend

63

that Q processes data d in a queue-like manner, by performing ‘input’ actions r1(d) and ‘output’
actions s2(d). S0 Pgy_,3(Q) processes data in queue-like manner by performing input actions
r1(d), output actions s3(d). First consider the parallel system Q' = I(P—ss3(Q) 1l Z): since Z
universally accepts s3(d) and transforms these into c3(d), this is just the queue with input r1(d),
output c3(d). Now the process Q* = Iu(Ps25s3(Q) |l s2(d).Z) appearing in the recursion equation,
is just like Q' but with the obligation to perform output action s2(d) before all oupur actions ¢3(d);
this obligation is enforced since s2(d) must be passed before py, 3(Q) and Z can communicate
and thereby create the output actions c3(d). So pc3 _2(Q%) = Qq, the queue loaded with d, in the
earlier notation used for the infinite specification of Queue (Table 10). But then Q = X3 p 71(d).Q4
and this is exactly what we want.

In fact, the renamings used in this specification can be removed in favour of a more
complicated communication format, as follows. Replace in the specification above py, ,3(Q) by
3,(Q Il V) where V = X4 s2*(d)-V and S2 = {s2(d), s2*%(d) | de D} with communications
s2(d)ls2*(d) = s3(d) for all d. To remove the other renaming operator, put
P =094005Q Il V) Il s2(d)-Z), and replace P 3_57(P) by d¢3(P | W) where W = %4 c3*(d)-W
and ¢3(d)lc3*(d) = s2(d) for all d. However, though the renamings are removed in this way, the
communication is no longer of the read-write format, or even in the hand shaking format, since we
have ternary nontrivial communications s2(d) = c3(d)le3*(d) = r3(d)Is3(d)lc3*(d). As we already
stated in the last theorem, this is unavoidable.

1.7. Abstraction.
A fundamental issue in the design and specification of hierarchical (or modularized) systems of
communicating processes is abstraction. Without having an abstraction mechanism enabling us to
abstract from the inner workings of modules to be composed to larger systems, specification of all
but very small systems would be virtually impossible. We will now extend the axiom system ACP,
obtained thus far, with such an abstraction mechanism.

Consider two Bags B,, Byg (cf. Example 1.5.1) with action alphabets {r1(d), s2(d) | de D}
and {r2(d), s3(d) | de D}, respectively. That is, B, is a bag-like channel reading data d at port 1,
sending them to port 2; By; reads data at 2 and sends them to 3. (That the channels are bags means
that, unlike the case of a queue, the order of incoming data is lost in the transmission.) Suppose the

bags are connected at port 2; so we adopt communications s2(d) | r2(d) = c2(d) where c2(d) is the
transaction of d at 2.

{8, {5

transparent Bag]Es13

Figure 1.4

i

64

The composite system B3 = (B, || By3) where H = {s2(d), 12(d) | de D}, should, intuitively,
be again a Bag between ports 1,3. However, from some (rather involved) calculations we learn that

B3 = Zyep rL@-((€2(d)s3@) | Bya).

So B, is a ‘transparent' Bag: the passage of d through 2 is visible as the transaction event c2(d).
(Note that this terminology conflicts with the usual one in the area of computer networks, where 2
network is called transparent if the internal structure is not visible.)

How can we abstract from such internal events, if we are only interested in the external
behaviour at 1,3? The first step to obtain such an abstraction is to remove the distinctive identity of
the actions to be abstracted, that is, to rename them all into one designated action which we call,
after Milner, 1: the silent action. This renaming is realised by the abstraction operator Ty,
parameterized by a set of actions I < A and subject to the following axioms:

ABSTRACTION
(@ =1
T (a) =aifael
1 (@) =tifael

T (xry) =)+ O
T xy) =& ®

Table 15

The second step is to attempt to devise axioms for the silent step T by means of which 1 can be
removed from expressions, as e.g. in the equation atb = ab. However, it is not possible to remove
all T's in an expression if one is interested in a faithful description of deadlock behaviour of
processes (at least in bisimulation semantics, the framework adopted in this paper). For, consider
the process (expression) a + 18; this process can deadlock, namely if it chooses to perform the
silent action. Now, if one would propose naively the equations Tx = xT =X, then a + 18 =a + d=
a, and the latter process has no deadlock possibility. It turns out that one of the proposed equations,
XT = x, can be safely adopted, but the other one is wrong. Fortunately, R. Milner has devised some
simple axioms which give a complete description of the properties of the silent step (complete with
respect to a certain semantical notion of process equivalence called rt8-bisimulation, which does
respect deadlock behaviour; this notion is discussed below), as follows.

SILENT STEP

XT=X
TX=TX + X
a(tx+y)=a(X +y)+ax

Table 16

|

85

To return to our example of the ‘transparent’ Bag B3, after abstraction of the set of ‘ransactions I
= {¢2(d) | de D} the result is indeed an ‘ordinary’ Bag:

4B3) =

(Zge p FHAE2AD.53) [Byy) = (%)
Lge p FHEX s3(d) || @) =

T gep (r1@- ws3@) L 1@By3) =

¥ gep TH@.s3@L 5®By3) =

z deD r1(d)(s3(@)|| (B 13))

from which it follows that T;(B, 3= B3 (**), the Bag defined by
B3 = % gep rHAE3@ [Byy).

Here we were able to eliminate all silent actions, but this will not always be the case. For instance,
‘chaining” two Stacks (see Figure 1.2) instead of Bags (Figure 1.3) yields a process with
‘essential’ T-steps. Likewise for a Bag followed by a Stack. (Here ‘essential’ means:
non-removable in bisimulation semantics.) In fact, the computation above is not as straightforward
as was suggested: to justify the equations marked with (*) and (**) we need additional proof
principles. As to (**), this equation is justified by the Recursive Specification Principle (RSP)
stating that a guarded system of recursion equations in which no abstraction operator Ty appears,
has a unique solution.

1.8. Proof rules for recursive specifications. We have now presented a survey of ACP;
we refer to Bergstra & Klop [85] for an analysis of this proof system as well as a proof that (when
the hand shaking axiom is adopted) the Expansion theorem carries over from ACP to ACP,
unchanged. Note that ACP_ (displayed in full in Section 1.11) is entirely equational. Without
further proof rules it is not possible to deal (in an algebraical way) with infinite processes, obtained
by recursive specifications, such as Bag; in the derivation above we tacitly used such proof rules
and these will be made explicit below.

(i) RDP, the Recursive Definition Principle:

Every guarded and abstraction free recursive specification has a solution.
(ii) RSP, the Recursive Specification Principle:

Every guarded and abstraction free recursive specification has at most one solution.
(iii) AIP, the Approximation Induction Principle:

A process is determined by its finite projections.

In a more formal notation, AIP can be rendered as the infinitary rule

66

Vn () = mp(y)

X=Yy

As 1o (i), the restriction to guarded specifications is not very important (for an informal definition of
‘guarded’ see Section 1.1); in the process algebras that we have encountered and that satisfy RDP,
also the same principle without the guardedness condition is true. More delicate is the situation in
principle (ii): first, T-steps may not act as guards : e.g. the recursion equation X = tX + a has
infinitely many solutions, namely T(a + q) is a solution for arbitrary g; and second, the recursion
equations must not contain occurrences of abstraction operators Ty. That is, they are
‘abstraction-free’ (but there may be occurrences of T in the equations). The latter restriction is in
view of the fact that, surprisingly, the recursion equation X = a-'r{a)(X) possesses infinitely many
solutions, even though it looks very guarded. (The solutions are: a-q where q satisfies T [a](q) =q.)
That the presence of abstraction operators in recursive specifications causes trouble, was already
noticed in Hoare [85].

As to (iii), we still have to define projections m, in the presence of the T-action. The extra

clauses are:

PROJECTION, CONTINUED

(@ =T

() =T,

Table 17

So, T-steps do not add to the depth; this is enforced by the T-laws in Table 16 (since, e.g., atb =ab
and Ta = ta + a). Remarkably, there are infinitely many different terms t; (that is, different in the
term model of ACPT , built from T and a single atom ‘a’, such that t; has depth 1, ie.t= (.
The t,, are inductively defined as follows:

h=2a1=TaH=Tt13=Ta+1),y=2a+1a,
t4k+1 = t.t4k+i-1 for i = 1,3 and k P 0,
t4k+i = t4k+i-3 + t4k+i-5 fori= 0,2 andk >0.

In fact, these are all terms (modulo provable equality in ACP,) with the properties as just stated.
Furthermore, with respect to the “summand ordering” < defined by x < x +y, the set of these term
takes the form of the partial order in Figure 1.5, which has the same form (but for one point) as the
Rieger-Nishimura lattice in intuitionistic propositional logic.

67

T(t(t+a)+1a)+1(Ta+ 1) t(t(t+a) +t(ta+1))

T(t(t+a) +1a) T(t+a)+T(tat 1)

T(t+a)+Ta T(ta+7)

(t+a)

Ta

Figure 1.5

The unrestricted form of AIP as in (iii) will turn out to be too strong in some circumstances;
it does not hold in one of the main models of ACP,, namely the graph model which is introduced in
Section 1.13. Therefore we also introduce the following weaker form.

(iv) AIP~ (Weak Approximation Induction Principle):
Every process which has an abstraction-free guarded specification is determined by its finite
projections .

Roughly, a process which can be specified without abstraction operators is one in which there are
no infinite 7-traces (and which is definable). E.g. the process X, defined by the infinite
specification {X=bX, X, = bXp,, +a"}, where a" is a-a- ... -a (n times), contains an infinite
trace of b-actions; after abstraction with respect to b, the resulting process, Y = t[b](XO), has an
infinite trace of T-steps; and (at least in the main model of ACP, of Section 1.13) this Y is not
definable without abstraction operators.

Even the Weak Approximation Induction Principle is rather strong. In fact a short argument
shows the following:

1.8.1. THEOREM. AIP = RSP.

As a rule, we will be very careful in admitting abstraction operators in recursive
specifications. Yet there are processes which can be elegantly specified by using abstraction
inside recursion. The following curious specification of Queue is obtained in this manner. We
want to specify Q,, the queue from port 1 to 2, using an auxiliary port 3 and concatenating

68

auxiliary queues Qq3, Q3y; then we abstract from the internal transaction at port 3. Write, in an ad
hoc notation, Q;9 = Q13*Q3- Now Q5 can be similarly split up: Q3= Q;,*Qg,- This gives rise
to six similar equations: Q,p, = Q,c*Qep where {a,b,c} = {1,2,3}. (See Figure 1.6.)

Figure 1.6
These six queues, which are merely renamings of each other, can now be specified in terms of each

other as in the following table. One can prove that these recursion equations, though not
abstraction-free, indeed have a unique solution.

QUEUE, FINITE SPECIFICATION WITH ABSTRACTION

Q2 =Zgepl@13093Q3 I s2(d)-Qsp)
Q) =Xgep2(d)T30093(Q03 I s1(d)-Q3p)
Q3 =Zaep 2@ 031Qy | B9
Q3p =ZgepB@Tyo 9;(Qz Il s2(dyQp)
Q31 =Z4epB3@71y0 9,(Qap I s1(d)Qyp)
Q3 =Z4ep @7 3,Qp Il @)

Table 18

Here the usual read-write notation is used: ri(d) means read d at i, si(d): send d at i,
communications are n(d)\si(d) = Ci(d); further = T[Ci(d)ldED} and al = a{n(d)’Sl(d) | de D} This
example shows that even with the restriction to read-write communication, ACP,_ is stronger than
ACP.

1.9. Alphabet calculus. In computations with infinite processes one often needs information
about the alphabet a(x) of a process x. E.g. if x is the process uniquely defined by the recursion
equation X = aX, we have o(x) = {a}. An example of the use of this alphabet information is given
by the implication o(x)"H = @ = Jdy(x) =x. For finite closed process expressions this fact can
be proved with induction to the structure, but for infinite processes we have to require such a

69

property axiomatically. In fact, this example will be one of the ‘conditional axioms’ below
(conditional, in contrast with the purely equational axioms we have introduced thus far). First we
have to define the alphabet:

ALPHABET
ald) =0
aty =0
a@ ={a}
a(tx) = ax)

a(ax) ={a}ua®X)
a(x+y) = o(x) L ody)
a®) =Upsq amgx)
o(dp(x) = ox) - H
ary() = o) - I

Table 19

To appreciate the non-triviality of the concept 0(x), let us mention that a finite specification can be
given of a process for which the alphabet is uncomputable (see Bergstra & Klop [84b] for an
example).

Now the following conditional axioms will be adopted:

CONDITIONAL AXIOMS
ox) | (a(y)nH) c H = Iyixly)=dg& 195
o (x) | (ay)nD) = @ = Txly)=1x (L))
H= Hl U H2 = aH(X) = (aHl o aHz)(X)
I=u I = =0y 112)(x)
ax)Nn H=0 = dyx)=x
ax)n 1=0 = tl(x)=x

Table 20

Using these axioms, one can derive for instance the following fact: if communication is of the
read-write format and I is disjoint from the set of transactions (communication results) as well as
disjoint from the set of communication actions, then the abstraction 7; distributes over merges x ly.

1.10. Koomen’s Fair Abstraction Rule. Suppose the following statistical experiment is
performed: somebody flips a coin, repeatedly, until head comes up. This process is described by
the recursion equation X = flip-(tail-X + head). Suppose further that the experiment takes place ina
closed room, and all information to be obtained about the process in the room is that we can hear
the experimenter shout joyfully: ‘Head!’. That is, we observe the process 1(X) where I = {flip,

70

tail}. Now, if the coin is ‘fair’, it is to be expected that sooner or later the action ‘head’ will be
perceived. Hence, intuitively, 1(X) = -head. (This vivid example is from Vaandrager [86].)

Koomen’s Fair Abstraction Rule (KFAR) is an algebraic rule enabling us to arrive at such a
conclusion formally. (For an extensive analysis of this rule see Bateen, Bergstra & Klop [87].) The
simplest form is

x=ix+y (el

KFAR,
T(x) =T T (¥)

So, KFAR, expresses the fact that the ‘t-loop’ (originating from the i-loop) in Ty(x) will not be
taken infinitely often. In case this “t-loop’ is of length 2, the same conclusion is expressed in the

rule

Xl = 11x2 + yl, X2 = 12)(1 + y2 (ll,iz [I)

KFAR,
Tl(xl) =T TI(y1+y2)

and it is not hard to guess what the general formulation (KFAR,, n 2 1) will be. In fact, as
observed in Vaandrager [86], KFAR can already be derived from KFAR, (at least in the
framework of ACPt#, to be discussed below).

KFAR is of great help in protocol verifications. An example is given in Section 1.12, where
KEAR isused to abstract from a cycle of internal steps which is due to a defective communication
channel; the underlying fairness assumption is that this channel is not defective forever, but will
function properly after an undetermined period of time. (Just as in the coin flipping experiment the
wrong option, tail, is not chosen infinitely often.)

An interesting peculiarity of the present framework is the following. Call the process 1 (=
T-1-T-....) livelock. Formally, this is the process Ty;) (x) where x is uniquely defined by the
recursion equation X = i-X. Noting that x = ix =1x + & and applying KFAR; we obtain =
T i](x) = 18. In words: livelock = deadlock. There are other semantical frameworks for processes,
also in the scope of process algebra but not in the scope of this paper, where this equality does not
hold (see Bergstra, Klop & Olderog [86, 871).

1.11. ACPT#, a framework for process specification and verification.

We have now arrived at a framework which will be called ACP,C#, and which contains all the
axioms and proof rules introduced so far. In Table 21 the list of all components of ACP,C# is given;
Table 22 contains the equational system ACP.. Note that for specification purposes one only needs
ACP, or ACP_*; for verification one will need ACPT# (an extensive example is given in Section
1.12). Also, it is important to notice that this framework resides entirely on the level of syntax and
formal specifications and verification using that syntax—even though some proof rules are
infinitary. No semantics for ACPT# has been provided yet; this will be done in Section 1.13. The

Al

idea is that ‘users’ can stay in the realm of this formal system and execute algebraical
manipulations, without the need for an excursion into the semantics. That this can be done is
demonstrated by the verification of a simple protocol in the next section; at that point the semantics
of ACPT# (in the form of some model) has, on purpose, not yet been provided. This does not mean
that the semantics is unimportant; it does mean that the user need only be concerned with formula
manipulation. The underlying semantics is of great interest for the theory, if only to guarantee the
consistency of the formal system; but applications should not be burdened with it, in our intention.

ACP
Basic Process Algebra Al-5
Deadlock A6,7
Communication function C1-3
Merge with communication CM1-9
Encapsulation D14
Silent step T1-3
Silent step: auxiliary axioms TM1,2;TC1-4
Abstraction DT; TI1-5
Renaming RN
Projection PR1-4
Hand shaking HA
Standard concurrency SC
Expansion theorem ET
Alphabet calculus CA
Recursive Definition Principle RDP
Recursive Specification Principle RSP
Weak Approximation Induction Principle AIP”
Koomen’s Fair Abstraction Rule KFAR

Table 21

The system up to the first double bar is ACP; up to the second double bar we have ACP_, and up to
the third double bar, ACP_*.

So ACPT# is a medium for formal process specifications and verifications; let us note that we
also admit infinite specifications. As the system is meant to have practical applications, we will only
encounter computable specifications. A finite specification (of which an expression is a particular
case) is trivially computable; an infinite specification {E; | n 20}, where E, is the recursion
equation X, = T(Xj,....Xg(p)): 18 computable if after some coding, in which E is coded as a
natural number e, the sequence {e; In 2 0} is computable. Here an important question arises: is
every computable specification provably equal 1o a finite specification ? At present we are unable to
answer this question; but we can state that the answer is affirmative relative to certain models of
ACP_*. Before we elaborate this, a verification of a simple protocol is demonstrated.

ACP

T

[

Al XT=X T1
+y=y+X
i+zy+yz)=(x+y)+z A2 TX+X=1TX T2
X+X=X A3 a(tx +y) =a(x +y) +ax T3
(X +y)z=Xz+YZ 2‘;
(xy)z = x(yz)
Xx+8=x A6
&x =38 A7
alb=bla c1
@|vlc=al®lo c2
3la=38 C3
sly=xly +y Lx+xly M1 _
aﬁx:ax CM2 tllx=w T™M1
ax |y =axlly) CM3 Ly =(xlly) T™M2
x+y)lLz=xlLz+ylz CM4 t|x=8 TCl
ax|b=(a|b)x CM5 x|t=8 TC2
albx=(@|bx CM6 wx|y=x|y TC3
ax | by = a| B)(lly) CM7 x|ty=xly TC4
x+y)|z=x|z+y|z CM8
x|y+=x|y+x|z CM9 oy @=1 DT
=1 TI1

oy (@) =a ifagH D1 7 (@)=a ifagl T2
E)H(a)=8 ifacH D2 7y (@) =Tifael TI3
oy (x+y) =3y) +3g) D3 Ty (x+y) =Ty () + 77 () T4
a]-[(xy) = aH (X)-aH (\)] D4 T (xy)= T (x)'TI ()] TI5

Table 22

1.12. An algebraic verification of the Alternating Bit Protocol.

In this section we will demonstrate a verification of a simple communication protocol, the
Alternating Bit Protocol, in the framework of ACP,‘#. (In fact, not all of ACP,C# is needed.) This
verification is from Bergstra & Klop [86a]; the present streamlined treatment was kindly made
available to us by F.W. Vaandrager (CWI Amsterdam).

Let D be a finite set of data. Elements of D are to be transmitted by the ABP from port 1 to port
2. The ABP can be visualized as follows:

Figure 1.7

73

There are four components:

A: Reads a Message (RM) at 1. Thereafter it Sends a Frame (SF), consisting of the message and a
control bit, into channel K until a correct Acknowledgement has been Received (RA) via channel L.
The equations for A are as follows. We will always use the notations: datum d € D, bitb e {0,1},
frame f e D x {0,1} (so a frame f is of the form db).

@

A =rMO

RMP = ¥ri(@)SF®

SEd® = s3(db)}RATD

RAIL = (5(1-b) + 15(e))-SFIP + r5(b)}RM1P

K: data transmission channel K communicates elements of D x {0,1}, and may communicate these
correctly or communicate an error value ‘e’. K is supposed to be fair in the sense that it will not
produce an infinite consecutive sequence of error outputs.

K = 330X
Kf = (1-s4(e) + Ts4(D) K

The t’s in the second equation express that the choice whether or not a frame f is to be
communicated correctly, cannot be influenced by one of the other components.

B: Receives a Frame (RF) via channel K. If the control bit of the frame is OK, then the Message is
Sent (SM) at 2. B Sends back Acknowledgement (SA) via L.

B =R

RED = (T4 r4(d(1-b) + () SAID + 3 ré(ab) sMP
sab = ssmRED

smdb = 2()-5AP

L: the task of acknowledgement transmission channel L is to communicate boolean values from B
to A. The channel L may yield error outputs but is also supposed to be fair.

74

L =3 ()L
LY = (1.55(e) + T-s5(b))-L

Define D = D U (D x {0,1}) U {0,1} U {e}. D is the set of ‘generalized data (i.e. plain data,
frames, bits, error) that occur as parameter of atomic actions. We use the notation: ge D. Forte
{1,2,...,6} there are send, read, and communication actions:

A = {st(g), rt(g), ct(g) l g e D, te {1,2,..,6}}.

We define communication by st(g) 1 rt(g) = ct(g) for g € D, te {1,2,...,6} and all other com-
munications give 8. Define the following two subsets of A:

H= {st(g), t(g) Ite {3,4,5,6}, g€ D}
I={ct(g) I te {3,456}, ge D}.

Now the ABP is described by ABP = Tyo (A Il K | B Il L). The fact that this is a correct protocol
is asserted by

1.12.1. THEOREM. ACP_ # - ABP = 3; r1(d)-s2(d)-ABP.

(Actually, we need only the part of ACPT# consisting of ACP_ +SC+RDP+RSP+CA+KFAR~—see
Tables 21, 22.)

PROOF. Let I' = {ct(g) | t € {3,4,5}, f € D}. We will use [x] as a notation for Ty o dyy(x).
Consider the following system of recursion equations:

o x =x°

@ X° =zynex,®
2) deb =1:-X3db+'c-X4db
@) X3® =c61b)x,%

@ %% =2@xP

) X% =c60)xP

©®) X6db = '|:-X5db + T-Xll'b

We claim that ACP* - X = [A K Il B Il L]. We prove this by showing that [A | K | B Il L]

75

satisfies the same recursion equations (0)-(6) as X does. In the computations below, the bold face
part denotes the part of the expression currently being ‘rewritten’.

© AIKIBILI=RMIKIRFIL)

1) RMPIKIRFPIL]=
Zqr1@[SF® K IR I L] =
24 11@)-[RA || K9 || REP || L] =
Z4ep T1(d)[RA%® || K40 || REP || L}

2 [RA® [K | R || L]=
T-[RA% || s4(e)K || RF® || L] + t-[RA || sd(db)K || RF® | L] =
T[RAD | K | SAM | L]+ [RA%® || K I SME || L)

3) [RA®IKISAM L=
c6(1-b)-[RA || K || RFP || LIP] =
c6(1-b)-([RAIL || K || RE® || s5¢e)-L] + ©-[RAMP || K I| REP || s5(1-b)L]) =
c6(1-b)- [SFI® | K | RE® | L] =
c6(1-b)- 1- T-[RAP || Kdb || RFP || L] =
c6(1-b)-[RAD || K || RFY [L.

@ [RADIKISM® | L]=
s2(d)-[RA% | K Il SAP I L].

(5) [RA®[KISAPIIL]=
c6(b)[RA || K I REMD (I LY.

6 [RA®[KIRF|LP]=
7[RA || K || RF!D || s5¢e)'L]+ 7[RAY || K | REIP || s5(b)L] =
w[SF® | K | REMP | L]+ o[RMMP I K | REFP I L.

(7 [SF® | KIRFIPL]=
t[RAMD || Kb || REID I L] =
7-(T-[RA || s4(e)K I| RFIP | L]+ [RAD || s4(db)K | RFIPIIL]) =
T[RA® | K Il SAP [L.

Now substitute (7) in (6) and apply RSP + RDP. Using the conditional axioms (see Table 20,
Section 1.9) we have ABP = 7((X) = tI(Xlo). Further, an application of KFAR, gives

76

1(X,®) = v 1y(X,®) and 73X ®) = X,

Hence,
(X D) = Sq 1@ty (Xt = Tg 1@ 1K, ™) =
T4 rl(@)s2(d) (Xs®) = T4 11025

and thus

1,(%,%) = T4 r1(@)s2(0) Tg r1(@)s2@) 7%,
(X,) = T4 r1(d)s2(d)- g r1(d)-s2(d)- (X

Applying RDP + RSP gives 'cI(Xlo) = 'cI(Xll) and therefore
4(X,% = X4 r1(@)-s2(d) 5(X,9,
which finishes the proof of the theorem. O

More complicated communication protocols have been verified in ACPT# by Vaandrager [86]:
a Positive Acknowledgement with Retransmission protocol and a One Bit Sliding Window
protocol. There the notion of redundancy in a context is used as a tool which facilitates the
verifications. A related method, using a modular approach, is employed in Koymans & Mulder
[86], where a version of the Alternating Bit Protocol called the Concurrent Alternating Bit Protocol
is verified in ACPT#. (In fact, also in the verifications in Vaandrager [86] and Koymans & Mulder
[86] one only needs the part of ACPT# mentioned after Theorem 1.12.1.) Another verification of
the Concurrent Alternating Bit Protocol is given in Van Glabbeek & Vaandrager [88].

1.13. Bisimulation semantics for ACP,C#: the model of countably branching
graphs.

We will now give a short description of what we consider to be the ‘main’ model of ACPT#. The
basic building material consists of the domain G of countably branching, labeled, rooted ,
connected, directed multigraphs. (In the notation of Chapter 3, G will be G, y;, where o is the
alphabet cardinality.) Such a graph, also called a process graph, consists of a possibly infinite set
of nodes s with one distinguished node s, the root. The edges, also called transitions or steps,
between the nodes are labeled with an element from the action alphabet; also and T may be edge
labels. We use the notation s —, t for an a-transition from node s to node t; likewise s —>; tisa
T-transition and s—gt is a d-step. That the graph is connected means that every node must be
accessible by finitely many steps from the root node. Examples of process graphs where already
given in Figures 1-3. Regarding 8-steps in process graphs, we will suppose that all process graphs

77

are 3-normalised; the precise definition follows in Definition 1.13.3.

Corresponding to the operations +, -, Il, L, |, Oy T Ty, O 0 ACPT# we define operations
in the domain G of process graphs. Precise definitions can be found in Baeten, Bergstra & Klop
[87]; we will sketch some of them here. The sum g + h of two process graphs g, h is obtained by
glueing together the roots of g and h; there is one caveat: if a root is cyclic (i.e. lying on a cycle of
transitions leading back to the root), then the initial part of the graph has to be ‘unwound’ first so as
to make the root acyclic. (In Chapter 2 we will be more precise about ‘root-unwinding’: see
Definition 2.1.2 there.) The product g-h is obtained by appending copies of h to each terminal node
of g; alternatively, one may first identify all terminal nodes of g and then append one copy of h to
the unique terminal node if it exists. The merge g |l h is obtained as a cartesian product of both
graphs, with ‘diagonal’ edges for communications. (See Figure 1.8 for the merge of ab and cd,
with communications bic = g and ald = f.) Definitions of the auxiliary operators I, | are somewhat
more complicated and not discussed here. The encapsulation and abstraction operators are simply
renamings, that replace the edge labels in H and I, respectively, by & and <, respectively.
Definitions of the projection operators 7, and o should be clear from the axioms by which they are

specified. As to the projection operators, it should be emphasized that T-steps are transparent: they
do not increase the depth.

Figure 1.8

The domain G of process graphs equipped with the operations just introduced, is not yet a model of
ACP,: for instance the axiom x + x = x does not hold. In order to obtain a model, we define an
equivalence on the process graphs which is moreover a congruence with respect to the operations.
This equivalence is called bisimulation congruence or bisimilarity. (The original notion is due to
Park [81]; it was anticipated by Milner’s observational equivalence, see Milner [80].)

78

1.13.1. DEFINITION. Let g € G.

(i) Steps s —, tand s—, ' (whereu,ve A — {1, 8}; s, t, t' are nodes of g) are brothers. A
step t =, t' is a son of the step s —>, t.

(i) gis said to be 8-normalised if &-steps have no brothers and no sons.

(iii) End points of 3-steps are virfual nodes; all other nodes in g are proper.

(iv) A node is a deadlock node if all outgoing traces have only edges with labels 7, & and end all
in 8. (See Figure 1.9.)

(v) Nodes from which only infinite T-traces start, are livelock nodes.

(vi) A deadlock-livelock node is a node from which all outgoing traces have as labels only T, &

and such that there is no succesfully terminating trace.

deadlock node livelock node deadlock-livelock node
T T 1
T T
) T T T
8
5 T
Figure 1.9

1.13.2. DEFINITION. A path T in g is a sequence
So —-)uo Sy —u1 - _9u(n-l) Sh (n 2 0)

of proper nodes and labelled edges. The node s is begin(n), the node s, is end(r). The path ©
determines a sequence of labels uguy...u, ; (u; € A U {1)); val(r) is this sequence with all T’s
skipped. Note that val(rt) € A*, the set of words over A, including the empty word A.

1.13.3. DEFINITION. Let g, h € G be 3-normalised. Let R be a relation between the proper nodes
of g;h. We say that R relates path 7 in g to path 7' in h (notation © R ') if

begin(m) R begin(r')
end(m) R end(n")
val(n) = val(w').

(s R t means: s,t are related by R.) If © R ', we also say that 7t is transfered by R to 7', and vice
versa.

() Relation R has the transfer property if:
- whenever 7 is a path in g and begin(w) R t, t € NODES(h), then = is transfered to some path

79

n' in h' with begin(n) =t
- likewise with the role of g, h interchanged.
(Note that by definition the end points of &, 7' are again related.)

1.13.4. DEFINITION. (i) Let g, h € G be d-normalised. Then g ﬂnBR h (g, h are rtd-bisimilar via
R) if there is a relation between the proper nodes of g, h such that

(1) theroots of g, h are related,

(2) aroot may only be related to a root,

(3) R has the transfer property,

(4) adeadlock-livelock node may only be related to a similar node.

(An equivalent definition is obtained by replacing (4) by:

(4") anode with possibly successful termination may only be related to a similar node. Here a
node has ‘possibly successful termination’ if there is an outgoing trace ending succesfully.)

(i) g e ghif there is an R such that g e 58 h.
1.13.5. EXAMPLES. (i) Figure 1.10 contains an example of a bisimulation in which only proper

atoms (no T, 8) are involved: the cyclic process graph g is bisimilar to the infinite process graph h
obtained by unwinding.

Figure 1.10

(ii) The two graphs in Figure 1.11 are bisimilar via the bisimulation relating nodes on the same
level (i.e. joinable by a horizontal line).

80

@
Figure 1.11

(iii) Figure 1.12 demonstrates a bisimulation between process graphs involving T-steps: nodes of
the same “color” are related.

Example of r t8-bisimulation: nodes of the same colour are related

Figure 1.12

We now are in the fortunate position that rtd-bisimilarity is not only an equivalence relation
on the domain G of process graphs, but even a congruence with respect to the operators on G. Thus

we can take the quotient G/« o8 notation: G. The following theorem is from Baeten, Bergstra &
Klop [87].

81
1.13.6. THEOREM. G is a model of ACP".

Remarkably, this graph model (as we will call it henceforth) does not satisfy AIP, the unrestricted
Approximation Induction Principle. A counterexample is given (in a self-explaining notation) by the
two process graphs g = X5 a" andh= Zo> a"+2® (see Figure 1. 13(a)); while g and h have the
same finite projections 7 (g) = K () =a + a2 + a3 + ... + a", they are not (rtd-)bisimilar due to the
presence of the infinite trace of a-steps in h. It might be thought that it would be helpful to restrict
the domain G of process graphs to finitely branching graphs, in order to obtain a model which does
satisfy AIP, but there are two reasons why this is not the case: (1) the finitely branching graph
domain would not be closed under the operations, in particular the communication merge (); (2) a
similar counterexample can be obtained by considering the finitely branching graphs g'= 7 g
where g" is the process graph defined by {X, = a"+ X, In21}andb'=g'+ a®. (See Figure
1.14(b).)

Figure 1.13

Figure 1.14

82

1.13.7. REMARK. It is not hard to see that the validity of AIP™ in the model G is a direct
consequence of the following general lemma about bisimulations. Here, for a graph g, w_(g) is the
n-th projection of g, i.e. what remains of g after cutting off everything below depth n.
Furthermore, « is the restriction of « < to the case where no 7 or 8 is present. (For an explicit

definition, see 2.1.4.1 in Chapter 2.)

1.13.7.1. LEMMA. Ler g, h be process graphs containing only proper steps (not T or 8). Let g be
finitely branching (h may be infinitely branching). Then:

Vn n,(g) 2 () = geh

PROOF. We may suppose that g, h are process trees. Suppose g is finitely branching. Define
relations = (n 2 1) and = between nodes s of gand tof has follows: s=tiff Vn s= tands=_t
iff 7 ((g)g & mp((h)r). Here (g), is the subtree of g with root s. We will prove that = is a
bisimulation.

For the roots s, t of g, h respectively we have indeed s = ty; this is just the assumption Vn
7, (g) = m,(h). Next we show the easy half of the bisimulation requirements: let s =t and
t —, t'. We have to show that there is an s' such that s —, s' and s' = t". By definition of =, and
because we have Vn s = t, for every n there must be a step s —, s,' such that s, ' = t'. Since s
has only finitely many successors (g is finitely branching), there must be an s' among the ' such
that s —, s' and §' =, t' for infinitely many n. Since the relations =, are decreasing (5p2 =, 2=,
2 ...) this means that s' =, t' for all n, i.e. s' = t'.

For the reverse bisimulation requirement, see Figure 1.15. Let s =t and s —, s'. To show
that there is a t' such that t =, t' and s' = t'. We can find a-successors ty, t, ..., ty,... of t such
that s' = t,. As was just proved, for every t; there is an a-successor s, of s with s, =t_. Since s
has only finitely many successors, the sequence {s,}, is in fact finite. Hence there is an
a-successor s* of s such that s* =t for infinitely many n. So, s'= t, = s* for infinitely many n.
So §'=s* and s'=t' where t' is one of the t; with t; =s*. O

The general case, where T and & may be present, follows by an entirely similar proof (see
also Baeten, Bergstra & Klop [87]). Note however that 7, (g) now is obtained by cutting away all
steps that are reachable from the root only by passing n or more proper steps. (So 7, (g) may
contain infinite T-paths.) Thus we have:

1.13.7.2. LEMMA. Let g, h be process graphs. Let g have finite projections (i.e. every (g isa
finite graph.) Then:

Vn m(g) eqsn,th) = gegh

Note that the assumption of finite projections is fulfilled for a graph which is defined by a system

83

of guarded recursion equations; hence AIP- holds in G.

Figure 1.15

1.14. The expressive power of ACP..

ACP, is a powerful specification mechanism; in a sense it is a universal specification mechanism:
every finitely branching, computable process can be finitely specified in ACP;. We have to be
more precise about the notion of ‘computable process’. First, an intuitive explanation: suppose a
finitely branching process graph g is actually given; the labels may include 7, and there may be even
infinite T-traces. That g is ‘actually’ given means that the process graph g must be ‘computable’: a
finite recipe describes the graph, in the form of a coding of the nodes in natural numbers and
recursive functions giving in-degree, out-degree, edge-labels. This notion of a computable process
graph is rather obvious, and we will not give details of the definition here (these can be found in
Baeten, Bergstra & Klop [87]).

Now even if g is an infinite process graph, it can be specified by an infinite computable
specification, as follows. First rename all t-edges in g to t-edges, for a ‘fresh’ atom t. Call the
resulting process graph: g;. Next assign to each node s of g; a recursion variable X and write
down the recursion equation for X¢ according to the outgoing edges of node s. Let X be the
variable corresponding to the root sqy of g;. As g is computable, g is computable and the resulting
‘direct’ specification E = {X = TS(X) I's € NODES(gy)} is evidently also computable (i.e.: the
nodes can be numbered as s, (n 2 0), and after coding the sequence e, of codes of equations E:
Xsn = Tgn(X) is a computable sequence). Now the specification which uniquely determines g, is
simply: {Y =1 {t}(XSO)} UE.Infact all specifications below will have the form {X = t1(X(),
Xy =Tp(X) I n 2 0} where the guarded expressions T (X) (= T, (X;1,...Xjp)) contain no
abstraction operators Ty. They may contain all other process operators. We will say that such
specifications have restricted abstraction.

84

However, we want more than a computable specification with restricted abstraction: to describe
process graph g we would like to find a finire specification with restricted abstraction for g. Indeed
this is possible:

1.14.2. FINITE SPECIFICATION THEOREM. Let the finitely branching and computable process
graph g determine g~ in the graph model G of ACP.. Then there is a finite specification with
restricted abstraction E in ACP; such thar [E]=g".

Here [E] is the semantics of E in the graph model. (The proof in Baeten, Bergstra & Klop [87] is
by constructing a Turing machine in ACP,; the ‘tape’ is obtained by glueing together two stacks. A
stack has a simple finite specification, already in BPA; see the example in Section 1.1.) A stronger
fact would be the assertion that every computable specification with restricted abstraction in ACP,
is provably equivalent (in ACPT#) to a finite specification with restricted abstraction. At present we
do not know whether this is true.

It should be noted that abstraction plays an essential role in this finite specification theorem.
If f: N — {a,b} is a sequence of a,b, let ps be the process £(0)-f(1)-f(2)-... (more precisely: the
unique solution of the infinite specification {X, = f(n)- X1 In2=0}). Now:

1.14.3. THEOREM. There is a computable function f such that process py is not definable by a finite
specification (in ACPr) without abstraction operator.

A fortiori, pg is not finitely definable in ACP. The proof in Baeten, Bergstra & Klop [87] is via a
simple diagonalization argument.

1.14.4. REMARK. As we have seen, the graph model of ACPT# (Section 1.13) does not satisfy the
unrestricted Approximation Induction Principle which states that every process is uniquely
determined by its finite projections. It is natural to search for a model in which this principle does
hold. However, Van Glabbeek [87] proves that such a model does not exist, if one wishes to
adhere to the very natural assumption that composition of abstraction operators is commutative, and
if one only allows models in which deadlock behaviour is respected (in which, therefore, the
equation T=7 + 13 does not hold). We will consider the following consequence of the axioms in

Table 20: T(a) * *(b} = (b} ° T(a) which we will denote by CA (commutativity of abstraction). Now
Van Glabbeek [87] proves:

1.14.5. THEOREM. ACP_ + KFAR, + RDP + RSP + CA + AIP}- T=1 +18.

So, in every theory extending ACPT, the combination of features AIP, KFAR, CA, RDP+RSP
is impossible. Among such theories are also theories where the equivalence on processes is much
coarser, such as in Hoare’s well-known failure model (see Hoare [85]).

85
2. Complete inference systems for regular processes

In the first chapter we have explained a proof system for specification of processes in bisimulation
semantics (namely, in the graph model G), which is ‘complete’ in the sense that every computable
process in G can be finitely specified. In this chapter we will address the issue of completeness in
the usual sense. In doing so, we restrict our attention to the submodel R of G consisting of
processes having only finitely many ‘states’, i.e. to ‘regular’processes. Silent steps (t-steps) are
allowed in these processes. We will present a complete inference system for such processes; it is
an improved version of the complete inference system in Bergstra & Klop [88].

To obtain the complete proof system we first explore various properties of bisimulations
between process graphs with T-steps (rt-bisimulation). This leads us to an analysis of
rt-bisimulation which may be illuminating for its own sake. This part of the present chapter is taken
from Bergstra & Klop [88]; Sections 2.1 and 2.2 are essentially 1.2-2.4 from Bergsta & Klop
[88], with some modifications, and with some examples and proofs omitted.

In this chapter (and the next) we will not consider the process constant 8, deadlock. This is
merely a matter of convenience, and in no way essential; all results can easily be adapted for the
presence of 8. On the other hand, the presence of T is very essential; without 1, complete proof
systems for regular processes are relatively easy to find. Because & is omitted from our

considerations, we will refer to rt8-bisimulation (defined in Chapter 1, Definition 1.13.4) as
rt-bisimulation.

2.1. Some properties of rt-bisimulation.

As in Chapter 1, G is the set of (at most) countably branching process graphs with edge labels from
A U {8} U {t}. Here A = {a,b,c,...} is the set of ‘proper’ atoms or actions. In the present chapter
we will consider the set R < G of finite process graphs in which no 8 occurs; so the edge labels are
from A, = A L {t}. Notation: u,v,... vary over A.

2.1.1. Root-unwinding

It will be convenient to have a canonical transformation of a process graph g € G into an
‘equivalent’ root-acyclic one. (Here ‘equivalent’ is in a sense which will be explained below, in
Proposition 2.1.4.3.)

2.1.2. DEFINITION. The map p: G — G, root-unwinding, is defined as follows. Let g € G have
root 1; then p(g) is defined by the following clauses:

(i) NODES(p(g)) = NODES(g) L {r'} where r'is a ‘fresh’ node;

(ii) the root of p(g) isr’;

(i) EDGES(p(g)) = EDGES(g) U (r' =, s | r— s € EDGES(®)};

(iv) nodes and edges which are inaccessible from the new root r' are discarded.

86

2.1.3. EXAMPLE. Figure 2.1 gives two examples of root-unwinding.

(@)

Figure 2.1

Observe that p is idempotent: p2(g) = p(g). Notation: GP is the set of all root-unwound graphs in
G.

2.1.4. Bisimulations

In the previous chapter we have already defined rt8-bisimulation; the concepts of ‘ordinary’
bisimulation = (on G X G), ‘t-bisimulation’ ¢ (on G x G) and ‘rooted T~bisimulation’ « . (on
GP x GP) are just restrictions of that of rt8-bisimulation, but for the sake of clarity we give the
successive definitions again, in a rephrased way which conforms more to the usual definition..

2.1.4.1. Bisimulation: =

Let g,h € G. The relation R C NODES(g) x NODES(h) is a bisimulation from g to h, notation

R:ge b, if

(i) Domain(R) = NODES(g) and Range(R) = NODES(h)

(i) (ROOT(g), ROOT(h)) € R

(i) if (s,t) € R and s — s' € EDGES(g) then there is an edge t — t' € EDGES(h), such that
(s\th e R.

@iv) if(s;t)e Randt —, t' € EDGES(h) then there is an edge s —», ' € EDGES(g), such that
(s'th € R

Further, we write g h if 3R R: g h. In this case g,h are called bisimilar.

87

2.1.4.2. EXAMPLE. See Figure 2.2 for a bisimulation between a graph and its root-unwinding; the
shaded lines denote the bisimulation.

Figure 2.2

Bisimilar process graphs have the same sets of traces. The reverse, however, does not hold.
We mention the following facts without proof:

2.1.4.3. PROPOSITION.

(i) Let ge G.Then g = p(g).

(ii) The relation « (bisimilarity) is an equivalence relation on G.

(iii) Ifghe G,R:g e handfors e NODES(g), t € NODES(h) we have (s,t) € R, then
R': (g)g & (h),, where R’ is the restriction of R 1o the nodes of (g); and (h),.

2.1.4.4. t-Bisimulation: e,

An equivalent definition for ordinary bisimulation can be given as follows. Replace in the definitdon

of 2.1.4.1. clauses (iii), (iv) by:

(i)' if(s,t) e Rand t: s - s'is a path in g (determining the ‘word’ uju,...uy (k 2 0) of labels
along the edges in 7), then there is a path 7': t -, t" in h such that (s',t') € R and such that
w = w' (w,w' are identical).

(iv) likewise with the role of g, h interchanged.

The definition of =, now parallels that for £, with as only alteration that w = w' is replaced by

w =, W' Here w = w' (w,w'e A,C* are equivalent modulo 1) if w,w' are identical after deletion of

Ts. E.g. 1=, 1Tt =_ € (the empty word); abtttct = tatbtc. Processes g,h € G such that

g & hare called t-bisimilar.

2.1.4.5. Rooted t-bisimulation: = .
Suppose g,h € GP and R: g =, h in such a way that

(s,;) € R = s=ROO0T(g) and t = ROOT(h), or: s # ROOT(g) and t # ROOT(h).
(So a non-root cannot be related in the bisimulation to a root.) Then R is called a rooted
T-bisimulation between g,h and we write R: g 2 _horg ﬁnR h. Such g h are called rt-bisimilar
(via R). Note that g « h = ge_handge_ h = ge_ h Asbefore, ¢ and 2 are
equivalence relations on GP and G, respectively. Also «,, < are invariant under p.

88

2.1.4.6. EXAMPLES.

E=1 = ?L‘"c
éﬂx“ LY K Nt N
a’éé))

T a y

@

a b

T
® ©
Figure 2.3

Some further obvious facts are:

2.1.4.7. PROPOSITION. (i) Let g,h € G be t-bisimilar via R. Let (s,t) € R. Then (g)g and (h), are
T-bisimilar (via the appropriate restriction of R). (The nodes st are called in this case T-bisimilar.)
(ii)Letghe GPand g ﬁn.R h. Let (s,t) € R. Then (g); &, (h), (in general not rt-bisimilar). 0

2.1.4.8. PROPOSITION. Let g,h € G and suppose R: g « haswell as R”: g 2 h. Then
RUR" g & h. Similar for ¢ and & .. O

(Note that the intersection of bisimulations R, R' need not be a bisimulation.)

2.1.4.9. DEFINITION. (i) A t-cycle in a process graph g is a cycle
TS g8y g 2 Se=8y (k21

(ii) A t—loop is a T-cycle of length 1:
T Sg —>¢ Sq-

2.1.4.10. PROPOSITION. Let g € G contain a 1—cycle passing through the nodes s,t. Then s,t are
T-bisimilar (i.e. (g)g 2, (2),).

PROOF. (See Figure 2.4, next page.) Note that every point in g accessible form s is accessible from
t and vice versa. Hence the node sets of (g); and (g), coincide. Now let Id be the identity relation on
NODES((g),)- Then it is easy to verify that Id U {(s,t)} is a T-bisimulation from (g)gto (g). O

2.1.4.11. PROPOSITION. (i) Let g € G contain t-bisimilar nodes st. Let g* be the result of adding
a t-edge from s to t. Then g and g* are t-bisimilar.
(i) Ler g € GP contain non-root nodes s,t which are t-bisimilar. Then g e gk

PROCF. (i) Let Id be the identity relation on NODES(g) (= NODES(g*)). Then Id U {(s,t)} is a
T-bisimulation from g to g* as required. (i) Similar. O

89

NODES(g), Z NODES(g),

Figure 2.4

This proposition says that adding t-steps between t-bisimilar nodes in a graph g does not
change the “t-bisimilarity character” of g (and for the same reason, of any node g, or better,
subgraph (g)q of g). Here the t-bisimilarity character of g is the class of all g' € G which are
T-bisimilar with g. In particular, the t-bisimilarity character is not disturbed by appending t-loops
to nodes of g. Vice versa, removing T-loops also does not change the T-bisimilarity character.

2.1.4.12. EXAMPLE.

Figure 2.5

Just as all t-loops can be removed from g without changing t-bisimilarity (which follows

from the previous proposition, by taking s = t), it is possible to remove all T-cycles from g. We
need a definition first:

2.1.4.13. DEFINITION. Let g € G contain nodes s,t. Then 8id(s,0) is the process graph resulting
from the identification of s and t, in the obvious sense.

90

Figure 2.6

2.1.4.15. PROPOSITION. (i) Let g € G and suppose s,t € NODES(g) are t-bisimilar. Then g and
Eid(s,) A€ T-bisimilar.

(ii) Let g € GP and suppose the non-root nodes s,t € NODES(g) are t-bisimilar. Then

8 2r¢ Bid(s,y):

PROOF. Obvious. O

2.1.4.16. COROLLARY. (i) Every g € G is t-bisimilar with some g' € G without t-cycles.
(ii) Every g € GP is rt-bisimilar with some g' € GP withour T-cycles.
(iii) Every g € R is t-bisimilar to some g' € R without infinite t-paths.

PROOF. Follows from considering Figure 2.7. O

Figure 2.7

We conclude this section with an observation illuminating the difference between < and
e .. The easy proof is left to the reader (or, see Bergstra & Klop [88]).

2.1.4.17. REMARK. Let g,h € G and let Tg, th be the result of prefixing a t-step. Then:
g2 h & tge 1th

2.2. An analysis of rt-bisimulation.
The main result of this section is that an rt-bisimulation R between gh € R can be analysed into

e P

91

more simple parts:

g 2. h

{ l
Ag) A(h)
\) \:

E(A(g) = E(A(h)

(Corollary 2.2.4). Le. g = hiff g,h after ‘preprocessing’ (by means of some simple operations
A, E: G — G), are bisimilar in the ordinary sense where T does not play its special role. This
analysis is the basis for the completeness theorem in the sequel where axioms are given describing
rT-bisimulation.

2.2.1. The operation A

First we need some terminology: if g € G, then an arc in g is a part of the form (a) in Figure 2.9
(here u € A.). In case n = m = 0, the arc is a double edge as in (b). Other special cases are in
Figure 2.9(c), (d): these are called A-arcs. It is not required that the three nodes displayed in (a)-(d)
are indeed pairwise different. The u-step between nodes s,t is called the primary edge of the arc.

s
n Tsteps Ne 8
u Ju N
u u
t Q 7
u t

. g m Tsteps
(a) ® © (@
Figure 2.9

Now the operation A: G — G is defined as follows: whenever g € G contains a path
1 —¢ 83 =, S5 (where s;,5,,5; need not be pairwise different), an edge s; —, s3 is added if not
yet present. Likewise for every path s; — 55 =, 83. A(g) is the result of this completion of g with
edges as indicated.

Further, we say that g € G is A-saturated if A(g) = g.

92

g h k a
a| < T
T b
a -3

i

Ag Ah Ak
al \ a) e b A
h b
© Y

Figure 2.10

2.2.2. EXAMPLE.

2.2.3. PROPOSITION. (i) A(g) ¢, g if g € G; (i) A(g) 2, gifg € GP.
PROOF. The identity relation R gives a (r)t-bisimulation. O

2.2.4. The operation E

Call a node of g € GP internal if it is not the root, and an edge of g internal if it is between internal
nodes. Further, call an internal t-step s —, t in g € GP an e-step if s,t are T-bisimilar. Finally,

consider the set of internal nodes of g € GP and the equivalence relation on this set given by
T-bisimilarity. We will call the equivalence classes: clusters. So €-steps always occur ‘inside’ a
cluster (see Figure 2.11).

clusters are indicated with {:}

Figure 2.11

S e

93

2.2.4.1. NOTATION. If s,s' are in the same cluster we write also s ~ s'.

The concept of clusters of nodes makes the structure of a process graph more perspicuous.
In particular, A-saturated process graphs g have a local structure as indicated in Figure 2.12:

cluster yin g

Figure 2.12

Namely, if vis a cluster in g and s —, tis an ‘incoming’ edge, then the endpoint t is carried in the
direction of the &-steps, thus providing arrows s —, t\, s =, t". Vice versa, if t' — pisan
outgoing edge, the starting point t' is carried backwards along e-paths. This is a simple
consequence of A-saturation and in fact it does not depend on the particular nature of €-steps.
Moreover, and this does depend on the definition of cluster in terms of e, if ¥ has an outgoing

edge —, to some cluster Y, then from every point in Y there is an edge —, to ¥. We will need this
last fact so let us prove it:

2.2.4.2. PROPOSITION. Let g € GP be A-saturated. Let s — t be an edge of g and let s' ~ s. Then
g contains an edge s' —, t' for some t' ~ t.

PROOF. Consider an rt-bisimulation R of g with itself relating s to s'. (R can be taken to be the
union of the identity relation on g and a T-bisimulation from (g) to (g)¢.) Now by definition of
T-bisimulation, given the edge s — t and s ~ s' there is a path 7: §' - t' with label T"utM in g for
some n,m = 0 and some t' with t' ~ t. By virtue of A-saturation, we now have an edge s' —, t'. O

Now we would like, in order to obtain the ‘structure theorem’ 2.2.4.7 concerning
(r)t-bisimulation as well as the completeness result in Section 2.3, to omit all e-steps in a
A-saturated graph g, resulting in a graph g' which is still rt-bisimilar to g. Here the need for
A-saturation comes in, for omitting €-steps could make a non-A-saturated graph g disconnected, as

in Example 2.2.2: there the 1-step in g (which clearly is an e-step) cannot be removed, but it can in
A(g).

94

2.2.4.3. DEFINITION. E is the operation from GP to GP which removes in g € GP all e-steps (as
well as parts of g which become disconnected in that process). If g = E(g), g is called prenormal.

The straightforward proofs of the next two propositions are omitted (they can be found in
Bergstra & Klop [88]).

2.2.4.4, PROPOSITION. E preserves A-saturation.

2.2.4.5. PROPOSITION. (i) If g € GP is A-saturated, then g = . E(g).
(ii) For g € GP: E(A(g) 2, g

Now we arrive at a key lemma:

2.2.4.6. LEMMA. Let g,h € GP be A-saturated and prenormal. Then:
ge . h = geh

PROOF. (1) Let R be an rt-bisimulation between g,h. Then there is no T-step in g which is
“contracted” by R in h, as in Figure 2.13 (and likewise with g,h interchanged):

Figure 2.13

Namely, if s =, the root of g, then this claim follows by definition of 2. Otherwise, s —.8'is
an internal step (s' #r since g € GP) and now by Proposition 2.1.4.7(ii):

(8)s 2 () = (8)g-
That is: s —,. s'is an g-step. But then g is not prenormal.
(2) Let s = s'(ue A}) be a step in g (see Figure 2.14, next page). By definition of the
rt-bisimulation R, there is given a t such that (s,t) € R, a path t = t' with label t"ut™, for some t'
such that (s',t") € R. By A-saturation of h, there is now a step t =, t- (1) and (2) together imply
that the rt-bisimulation R is in fact an ordinary bisimulation. 0

——

95

Figure 2.14
2.24.7. COROLLARY. Let g,h € GP and let g = h. Then E(A(g)) « E(A(h)).

PROOF. By Proposition 2.2.3, Ag « . Ah. By Proposition 2.2.4.5, E(Ag) « . E(Ah). By

Proposition 2.2.4.4, E(Ag) and E(Ah) are A-saturated. Hence by Lemma 2.2.4.6 these two graphs
are bisimilar in the ordinary sense. O

2.3. Complete inference systems for rt-bisimulation.
(This section will be slightly informal and gloss over some details; for these we refer to Bergstra &
Klop [88].) A corollary of the preceding section (Corollaries 2.1.4.16 and 2.2.4.7) is that an

rt-bisimulation between two graphs g, h € RP can be analyzed in the following parts. (See Figure
2.15)

g < > h
rT
contraction of
T-cycles
g t-cyclefree b’
saturation (A) /
A(g) T-cycle free A(hY)
saturated
pruning (E)

E(A(g)) & E@Q ()
Figure 2.15

So, in order to have a complete proof system for « ., it suffices to have:

96

I. A complete proof system for «;

II. Proof rules which make ‘contraction of t-cycles provable’;
III. Likewise for saturation (the operation A);

IV. Likewise for pruning (the operation E).

First we have to explain the syntax used for regular processes, and the interpretation of
expressions in that syntax into the semantic domain R = R/« .. Precise syntax definitions can be
found in Bergstra & Klop [88]; here we will be more informal and give some suggestive examples
instead.

Our syntactic expressions, denoting regular processes in R, will be either of the form t where
t is a closed BPA-term (see Table 1) or recursive expressions <X, | E> where E = {X; =
(X5 Xp) 1 = 1.0}, Here (X) (= (X y,...Xp) is a BPA-term possibly involving formal
recursion variables from {X;,...,.X,}. Moreover, the ;(X) are ‘simple’ terms, defined as
follows.*)

2.3.1. DEFINITION. (i) Every u € A_ is a simple term.
(i) LetX be arecursion variable and letu e A_. Then uX is a simple term.
(iii) Lett, t be simple terms. Then t + t' is a simple term.

So, aX + 1Y + ¢ is a simple term, but abX + ¢, b(aX + ¢) and aXY + bYY are not.

The semantics of an expression <X | E> in R is obvious: to <X | E> there corresponds in an
immediate way, suggested by the next example, a process graph in R, call it g_y g, ; now the
semantics [<X | E>]g i g xgs / £

2.3.2. EXAMPLE. The semantics of T-<X | X = 1Y +aY¥, Y = ©X + b> is the graph g in Figure
2.19(2), modulo = .. The semantics of t-<X | X = aX + b> is h/ =, h as in Figure 2.16(b).
Actually, g <. h; we will return to this example and show that the two expressions just mentioned
are provably equal.

(@)
Figure 2.16

(b)

(*) (Actually, we have to be slightly more liberal w.r.t. the form of the {; inE = (X; = ;(Xy,... X)) li=1,..,n).In
fact, we will allow substitutions for variables in the t;, in order to have equalities like e.g. <X I X = ((X,Y), Y =
S(X,Y)> = <X 1 X = t(X,Y), Y = s(t(X,Y),Y)>. For a more precise treatment see Bergstra & Klop [88].)

97

I. Having thus established our syntax and semantics, we turn to the question of finding a
complete proof system for the easier case of bisimulation, «. This question was solved in Milner
[84b], using the syntax of [-expressions. Milner’s complete proof system ‘M’ for regular
processes is given in Table 23.

M
Xx+0=x A0
X+y=y+x Al
X+ +z=x+(y+2) A2
X+X=X A3
HX.TX) = uY.T(Y) uo
MXTX) = TEX.TCO) ul
x = T(x)
——————— T(X) guarded w2
x = pX.T(X)
PX(X + T) = pX(T) u3
Table 23

2.3.3. EXAMPLE. Consider the p-expressions pX. aX and pY. (aY + auX.aX), denoting the
graphs g, h (modulo «) in Figure 2.17. Since g « h, we must be able to prove equality between
the two p-expressions. Indeed: abbreviate uX. aX by L, and the other pi-expression by R. Then, in
M, one proves: L = al. =alL + al. and R = aR + aL.. Hence L, R are solutions of the same guarded
recursion equation X = a¥X + aL. Therefore L = R.

g h
O =
a
a

Figure 2.17
In the present framework we have the equivalent proof system BPA . (equivalent, modulo
some inessential details, discussed in Bergstra & Klop [88]) as in Table 24 below. Here E = {X, =
Ty(X4,....X,) I'i = 1,...,n}. The rules R1,2 correspond to p1,2 in Table 23. In particular, R1
implies the following axiom (which is equivalent to R1):
<X 1E>=T(<X; | B>, ..., <X | E>)
and this axiom correspon<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>